What is the quadratic formula?

Prepare for the Math Teacher Certification Test. Tackle math concepts with quizzes, get hints, and detailed explanations. Be exam-ready!

The quadratic formula is used to find the solutions (or roots) of a quadratic equation, which is typically expressed in the standard form ax² + bx + c = 0, where a, b, and c are constants. The correct expression for the quadratic formula is derived from completing the square of a quadratic equation.

The formula is given as:

x = (-b ± √(b² - 4ac)) / (2a)

This formula correctly utilizes the discriminant, expressed as b² - 4ac, which determines the nature and number of the roots. Specifically, if the discriminant is positive, there are two distinct real roots; if it is zero, there is one real root (or a repeated root); and if it is negative, the roots are complex.

In the correct answer, the square root part, √(b² - 4ac), accurately reflects how the solutions are determined based on the discriminant. The ± symbol indicates that there are generally two solutions to the quadratic equation. Dividing by 2a is essential for scaling the result appropriately based on the coefficient a of the x² term.

The other choices include variations of the formula that either alter the discriminant or misrepresent the relationship in

Subscribe

Get the latest from Examzify

You can unsubscribe at any time. Read our privacy policy